
Phase diagrams of a lattice-gas model for micellar binary solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 3347

(http://iopscience.iop.org/0953-8984/8/19/010)

Download details:

IP Address: 171.66.16.208

The article was downloaded on 13/05/2010 at 16:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 3347–3361. Printed in the UK

Phase diagrams of a lattice-gas model for micellar binary
solutions

A Benyoussef†, L Laanait‡, N Masaif†§ and N Moussa†
† Laboratoire de Magnetisme et Physique des Hautes Energies, Faculté des Sciences, BP 1014,
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Abstract. Using the mean-field approximation, we study the phase diagrams of the micellar
binary solutions in the presence of a chemical potential of the amphiphiles(h) and the attraction
interaction intermicellar parameter(J ) for different values of competing interactions (K0 and
K1).

1. Introduction

One of the most fascinating and challenging problems of contemporary experimental and
theoretical physics has been that of achieving an understanding of the characteristic of phase
diagrams of amphiphic systems.

Recently, several models of binary mixtures of amphiphile (a molecule of both
hydrophilic and hydrophobic parts) and water have been proposed in order to reproduce
the phases observed experimentally [1–6].

In general, the amphiphile molecules in the water–amphiphile mixtures try to arrange
themselves as to only expose their polar head groups to the water molecules. In particular,
when the amphiphile is wholly immersed in water, the molecules again try to reduce the area
of contact with water in order to form aggregates (rods, spheres, lammellar,. . . ). Precisely,
when a hydrocarbon is in contact with water, the network of hydrogen bonds between water
molecules reconstructs itself to avoid the region occupied by hydrocarbon. This constraint
on the local structure of water decreases the entropy near the hydrocarbon, and it results in
an increase of the free energy of the system [7].

For amphiphilic systems, the aggregation of molecules of the binary solution induces
multiple equilibrium processes controlled by intermolecular and interaggregate forces [8].
Micellar aggregates appear in various shapes and sizes, depending on the amphiphiles,
the concentration and other thermodynamic parameters. This suggests a classification of
the aggregates into three general categories as follows: (i) globular aggregates, where a
spherical micelle is a prototype of this class; (ii) rodlike aggregates, where a cylindrical
micelle is the typical example of this class; (iii) bilayers, where a disclike aggregate is an
example of this class. The choice among all the possible shapes is determined by interactions
between the hydrophilic headgroups and geometric packing constraints on the hydrophobic
tails, but the transition from one shape to another may be obtained by changing either the
temperature or the concentration or by adding a third component.
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Gelbartet al [6] have provided an introduction to micellization phenomena in aqueous
surfactant solutions. The discussion presented by these authors has been restricted to the
case of dilute solutions where interaction between micellar aggregates can be neglected.

With increasing amphiphile concentration a variety of lyotropic phases are found
[14, 8, 10, 11]. The phase diagram for the system of water and C12E8 (i.e. C12H25

(OCH2CH2)8OH) and for water and C12E5 has been produced respectively by Degiorgioet
al [13] and Streyet al [12] representing such phenomena.

At low temperatures, Gompper and Schick [4] and Matsen and Sullivan [3] have
exhibited within mean-field theory a two-phase coexistence between homogeneous water-
rich and amphiphile-rich phases, but at higher temperatures there is a single disordered
phase. The phase diagram established in [4] resembles that of the system of C12E8 and
water [8] for which scattering experiments have been carried out [13], that is, the model
employed in [4] is a generalization of one considered by Halley and Kolan [2].

Concerning the microscopic approach, Shnidman and Zia [15] recently proposed a
lattice-gas model, based on constructing a coarse-grained representation of different types
of aggregate occurring in micellar binary solutions (MBS’s) in terms of Ising variables.
One introduces on a lattice site(i, j) the Ising variable satisfyingsi,j = +1 for a micellar
section andsi,j = −1 describes a region, of comparable size, predominantly occupied by a
solvent.

A single +1 spin completely surrounded by−1 spins is identified with a globular
micelle, and a linear chain of+1 spins surrounded by−1 spins corresponds to a rodlike
micelle. Finally, a spin+1 at the end of a chain of+1 spins surrounded by−1 spins is
called an end cap [15].

In this paper we propose a description, within the mean-field approximation, of phase
diagrams of the MBSs in two dimensions in the space of the parametersT (temperature)
andh (chemical potential of the amphiphiles) for different fixed values of the interactions.

Our motivation for this study was the well known fact that the chemical potential of
the amphiphilesh, for fixed values of the coupling interactions, may change the nature of
phase transitions in fundamental way, inducing the appearance of multicritical points. This
model of the micelles has been examined, at low temperatures [16], using the Pirogov–Sinai
theory of first-order phase transitions.

The layout of this paper is as follows. In section 2, we will express the lattice-gas
model of the micelles in terms of Ising spin variables. In section 3, we will introduce the
ground states of the model. In section 4, we will establish the free energy expression and
the mean-field equations of the system considered. In section 5, we will give a description
of the phase diagrams in the presence of the chemical potential of the amphiphiles(h) and
the attraction interaction intermicellar parameter(J ). Finally in section 6 we present our
conclusions.

2. The model of the system

The Hamiltonian of the proposed model is a sum of three terms:

H = Hk + HJ + Hh

whereHk is effective at the intramicellar length scale, representing many-body interactions
responsible for self-association and controlling the size and shape distribution of aggregates,
and HJ describes an effective short-range coupling between the aggregates at a larger
intermicellar length scale. Finally,Hh represents the usual chemical potential for controlling
the concentration of amphiphiles (micelles) in the grand canonical formulation.
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We assign negative energies−K0 and−K1, respectively, for the formation of a spherical
micelle and a rodlike micelle. For an end-cap, the average−(K0 + K1)/2 is chosen.

To write H explicitly, it is convenient to use the lattice-gas variables

ti,j = (1 + σi,j )/2 Si,j = (1 − σi,j )/2.

For further convenience, we define the bilinear products

ui,j = ti−1,j ti+1,j

vi,j = Si−1,j Si+1,j

wi,j = ti−1,j Si+1,j + Si−1,j ti+1,j

and similar ones withi ↔ j . In terms of these operators,H is

H = −K0

∑
tvivj − 1

2(K0 + K1)
∑

t (wivj + viwj ) − K1

∑
t (uivj + viuj )

−J
∑

S(ui + uj ) − h
∑

(t − s) (1)

where we have suppressed all except the underlined indices and the summations are over
all site indices [15].

The HamiltonianH is transformed in terms of Ising variables, to the form

−H = J1

∑
(1)

σi + J2

∑
(2)

σiσj + J3

∑
(3)

σiσj + J4

∑
(4)

σiσj + J5

∑
(5)

σiσjσk + J6

∑
(6)

σiσjσk

+J7

∑
(7)

σiσjσk + J8

∑
(8)

σiσjσkσl + J(9)

∑
(9)

σiσjσkσl + J10

∑
(10)

σiσjσkσlσm.

(2)

The sum runs over all the spins in different sites, bonds and loops on the following cell:

k

i

ml j

For example, the index (2), (5) and (8) indicates the sum over the following bonds (nearest-
neighbour pairs) and loops respectively:

i j m j l m j

i i

andJ1 = (−5K0 + 8J + 32h)/32, J2 = −(4K0 + 2K1 + 8J )/32, J3 = (2K0 − 4K1)/32,
J4 = (K0+2K1+4J )/32,J5 = (K0+2K1−4J )/32,J6 = (K0−2K1)/32,J7 = J8 = K1/32,
J9 = J10 = −K0/32, whereK0, K1 andJ are positive. We note that the model describing
the physical situation corresponds to positive values ofJ .

3. Ground states of the model

In order to discuss the phase diagrams of this model, it is useful to introduce the ground
states of the system [16] which are defined as follows. We denote byG1 the water ground
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state (g.s.),G2 the spherical micelles (g.s.),G3 the rarefied spherical micelles (g.s.),G4 the
infinite rodlike micelles (g.s.),G5 the reversed micelles (g.s.) andG6 the amphiphile (g.s.)
(see figure 1(a)).

(a)

(b)

Figure 1. (a) Ground states:G1, the water ground state (g.s.);G2, the spherical micelles (g.s.);
G3, the rarefied spherical micelles (g.s.);G4, the infinite rodlike micelles (g.s.);G5, the reversed
micelles (g.s.) andG6, the amphiphile (g.s.). (b) The configurations with residual entropy of
G5: the spinsε may take indifferently the value+1 or −1. (b) The configurations with residual
entropy of G2 are governed by the following constraints. Ifξ = −1, then the next-nearest
neighbours (NNNs)(ε) of the spinξ can take indifferently the value+1 or −1. If ξ = +1, all
the NNNs of the spinξ must take the value−1. (From [16])
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(a)

(b)

(c)

Figure 2. (a) The phase diagram at zero temperature in the space of the parametersJ and
h with K1 > K0. The points a, b, c and d correspond toK1, −K1/2, − 1

2(2K1 − K0) and
− 1

2(4K1 − 3K0), respectively. (b) The zero-temperature phase diagram for the case where
K0/2 6 K1 6 K0. (c) The zero-temperature phase diagram for the case whereK1 6 K0/2.

The phase diagram at zero temperature of the system is given in the plan(J, h) for
all values of the parameters,K0, K1, such thatK1 > K0 (see figure 2(a)). For the case
K1 < K0 we established the zero-temperature phase diagram as in figure 2(b) [16].

To characterize the different ground states, in the mean-field approximation, we
introduce the parametersmi (i = 1, . . . , 4) corresponding to four magnetizations on the
four sublattices. Hence, for example, the rarefied spherical micelle ground state can be
specified by(m1 = −1, m2 = −1, m3 = −1, m4 = +1).

4. Mean-field equations

In the mean-field approximation the free energyF of the micellar binary solutions may
be expressed as a function of the inverse temperatureβ, the variational parametershi

(i = 1, . . . , 4), the magnetizationsmi (i = 1, . . . , 4) andJi (i = 1, . . . , 10), which have
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Figure 3. The phase diagram of the model forK1 > K0 and 06 J 6 K1−K0 on theT –h plane
(we choose, for example,K1/K0 = 2 andJ/K0 = 0.5). G1, G3, G4, G5 and G6 are different
pure phases. The solid lines are first-order transitions and the dashed lines are second-order
transitions. There are two tricritical points C1 and C2 and two critical end-points (B1A2)1 and
(B1A2)2.

been mentioned previously:

F = − 1

4β

4∑
i=1

log(2 cosh(βhi)) + 1

4

4∑
i=1

(hi − J1)mi − (J2/2)(m1 + m4)(m2 + m3)

−J3(m1m4 + m2m3) − (J4/2)(m2
1 + m2

2 + m2
3 + m2

4)

−(J5/4)((m1 + m4)(m
2
2 + m2

3) + (m2 + m3)(m
2
1 + m2

4))

−J6(m1m2(m3 + m4) + m3m4(m1 + m2))

−J7(m1m4(m1 + m4) + m2m3(m2 + m3))

−(J8/2)(m1m4 + m2m3)(m1 + m4)(m2 + m3) − (J9/2)(m2
1m

2
4 + m2

2m
2
3)

−J10(m
2
2m

2
3(m1 + m4) + m2

1m
2
4(m2 + m3)) (3)

where the functionmi (i = 1, . . . , 4), that is the average magnetization per spin, is given
as follows:

mi = tanh(βhi). (4)

The mean-field equations in this situation are obtained by minimizing the expression of free
energyF with respect to the variational parametershi (i = 1, . . . , 4) combined with the
last expression for the magnetization. Then the first equation of this system corresponding
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Figure 4. The phase diagram of the model forK1 6 K0/2 andJ > 0 on theT –h plane (we
choose, for example,K1/K0 = 0.25 andJ/K0 = 1). G1, G2 and G6 are different pure phases.
The solid lines are first-order transitions and the dashed lines are second-order transitions. The
tricritical point C occurs.

to m1 is

m1 = tanh{β(J1 + 2J2(m2 + m3) + 4J3m4 + 4J4m1 + J5(2m1(m2 + m3) + (m2
2 + m2

3))

+4J6(m3m4 + m2(m3 + m4)) + 4J7(m
2
4 + 2m1m4)

+2J8(m2 + m3)(2m1m4 + m2m3 + m2
4) + 4J9m1m

2
4

+J10(m
2
2m

2
3 + 2m1m

2
4(m2 + m3)))}. (5)

In order to find the three other mean-field equations corresponding tom2, m3 and m4

we must exchange, respectively,(m1 ↔ m2, m3 ↔ m4), (m1 ↔ m3, m2 ↔ m4) and
(m1 ↔ m4, m2 ↔ m3).

The physically relevant solution must be found which gives the lowest value for mean-
field free energy.

5. Results

The mean-field theory (MFT) should provide an adequate description of the system
considered in this work. On the one hand the mean-field equations for a lattice gas
model for micellar binary solutions give different regions of the phase diagrams where
the phase transition lines and the multicritical points, especially critical and tricritical
points, are indicated. On the other hand the analysis is restricted to the mean-field
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Figure 5. The phase diagram of the model forK0/2 6 K1 6 K0 andJ > 0 (we choose, for
example,K1/K0 = 0.8 andJ/K0 = 1) on theT –h plane. G1, G2, G5 and G6 are different
pure phases. The solid lines are first-order transitions and the dashed lines are second-order
transitions. There are two tricritical points C1 and C2 and a multicritical point B3.

approximation exhibiting the high-temperature region and low-temperature region which
is studied analytically in [16].

In order to realize this, we constructT –h and T –J phase diagrams, which exhibit a
variety of phases, for various values of the competing interactions. So, following Griffits
[7], we define the critical end-point ‘BmAn’ as the intersection of a number ‘m’ of lines
of second order and a number ‘n’ of lines of first order. The multicritical point ‘Bm’ is
the intersection of a numberm of lines of second order. Then-phase point ‘An’ is the
intersection of a number ‘n’ of lines of first order. In particular we denote by ‘C’ the
tricritical point which is the intersection of a line of second order and a line of first order.

5.1. The T–h phase diagrams

To study the phase diagrams in the(T , h) plane we propose a description of the phases of
the system for different cases.

In the caseK1 > K0 and 06 J 6 K1 − K0 (here we choose, for example,K1/K0 = 2
and J/K0 = 0.5) the phase diagram shows the existence of the phases G1, G3, G4, G5

and G6, the tricritical points C1 and C2 and the critical end-points (B1A2)1 and (B1A2)2

(figure 3). Hence, at low temperatures and for a negative value of the difference of the
chemical potentials of the binary mixtures (amphiphiles–water),h, the rodlike micelles
occur. Further, at higher temperatures, one can observe the rarefied spherical micelle phase
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Figure 6. The phase diagram of the model forK1 > K0 and J > K1 − K0 (we choose, for
example,K1/K0 = 4 andJ/K0 = 5) on theT –h plane.G1, G2, G3, G5 andG6 are different
pure phases. The solid lines are first-order transitions and the dashed lines are second-order
transitions. There are two tricritical points C1 and C2, a multicritical point B3 and the triple
point A3.

and the phase transition between it and the rodlike micelles is of first order. As the chemical
potential(h) becomes great reversed micelles appear on the phase diagram. In comparison
with the analytical investigation discussed in [16], we would like to point out that the study
by means of a direct numerical analysis of the mean-field equations allows us to establish
the G3 phase (the rarefied spherical micelles) at high temperatures; these disappear at low
temperatures (see figure 3).

In the caseK1 6 K0/2 andJ > 0 (here we choose, for example,K1/K0 = 0.25 and
J/K0 = 1) the phase diagram shows the existence of the following phases: G1, G2 and
G6, which have been defined previously except thatG2 is the state with residual entropy
(figure 1(b)) corresponding toG2 as defined in [16]. Here we identified this phase by
observing the four sublattice magnetizations (m1, m2, m3, m4) such thatm1 > 0, m2 < 0,
m3 < 0 andm4 > 0 where the sublattices corresponding tom1 and m4 (m2 and m3) are
equivalent (non-equivalent). Moreover we show the existence of the tricritical point C in
the phase diagram (figure 4).

In the caseK0/2 6 K1 6 K0 andJ > 0 (here we choose, for example,K1/K0 = 0.8
and J/K0 = 1) the phase diagram presents the phases corresponding toG1, G2, G5

and G6 which have been defined previously except thatG5 is the state with residual
entropy (figure 1(b)) corresponding to G5 as defined in [16]. We note that this phase
is characterized, in the mean-field case, by the vanishing of the magnetization in some
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Figure 7. The phase diagram of the model forh < − 1
2(4K1 − 3K0) (for example,K1/K0 = 2

andh/K0 = −3) on theT –J plane. G1 andG2 are the pure phases. The solid lines are first
order transitions and the dashed lines are second order transitions. The tricritical point C occurs.

Figure 8. The phase diagram of the model forh ∈ [− 1
2(4K1 − 3K0), − 1

2(2K1 − K0)] (for
example,K1/K0 = 2 and h/K0 = −2) on theT –J plane. G1, G2 and G3 are different
pure phases. The solid lines are first-order transitions and the dashed lines are second-order
transitions. The triple point A3 and the tricritical point C occur.

sublattice ath = J − (K1 − K0) (e.g. h/K0 = 1.2). For h > J − (K1 − K0) (e.g.
h/K0 > 1.2) the magnetization on this sublattice increases continuously withh/K0 from 0
to +1. Moreover, in this phase diagram we note the existence of two tricritical points C1

and C2 and a multicritical point B3 (figure 5). For a negative value of the chemical potential
(h) of the amphiphiles the phase with residual entropy corresponding to spherical micelles
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Figure 9. The phase diagram of the model forh = − 1
2(2K1 − K0) (for example,K1/K0 = 2

andh/K0 = −1.5) on theT –J plane.G1, G2, G3 andG4 are different pure phases. The solid
lines are first order transitions and the dashed lines are second order transitions. There are two
critical end-points of type B2A2 and BA2 and two tricritical points C1 and C2.

Figure 10. The phase diagram of the model forh ∈ [− 1
2(2K1 − K0), −K1/2] (for example,

K1/K0 = 2 andh/K0 = −1.25) on theT –J plane. G1, G2 andG4 are different pure phases.
The solid lines are first-order transitions and the dashed lines are second order transitions. The
critical end-point BA2 and the tricritical points C1 and C2 occur.

exists but ash becomes great the phase with residual entropy corresponding to reversed
micelles occurs and the transition between them is of second order.

In the caseK1 > K0, J > K1 − K0 (here we choose, for example,K1/K0 = 4 and
J/K0 = 5) the phase diagram presents the phases corresponding toG1, G2, G3, G5 andG6,
two tricritical points C1 and C2, a multicritical point B3 and the triple point A3 (figure 6). In
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Figure 11. The phase diagram of the model forh ∈ [−K1/2, 0] (for example,K1/K0 = 2 and
h/K0 = −0.5) on theT –J plane.G2 andG4 are the pure phases. The solid lines are first-order
transitions and the dashed lines are second order transitions. The critical end-points (BA2)1,
(BA2)2 and B2A and the multicritical point B3 occur.

this phase diagram, we point out that the rarefied spherical micelles phase can be observed at
low temperature and for a negative values of the chemical potential(h) of the amphiphiles.

5.2. The T–J phase diagrams

The phase diagrams in the(T , J ) plane are given here for different cases.
In the caseh < − 1

2(4K1 − 3K0) (here we choose, for example,K1/K0 = 2 and
h/K0 = −3) the phase diagram presents the phases corresponding toG1 and G2 and the
tricritical point C (figure 7).

In the caseh ∈ [− 1
2(4K1 − 3K0) − 1

2(2K1 − K0)] (here we choose, for example,
K1/K0 = 2 andh/K0 = −2) the phase diagram presents the phases corresponding toG1,
G2 andG3, the triple point A3 and the tricritical point C (figure 8). We note here that, by
increasing the intermicellar attraction parameter(J ), one can obtain a first-order transition
from the rarefied spherical micelle phase to the spherical micelle phase.

In the caseh = − 1
2(2K1 − K0) (here we choose, for example,K1/K0 = 2 and

h/K0 = −1.5) the phase diagram presents the phases corresponding toG1, G2, G3 andG4,
the critical end-points of type B2A2 and BA2 and the tricritical points C1 and C2 (figure 9).
We find that this phase diagram that for certain values ofJ and at low temperatures rodlike
micelles occur, and for higher temperatures one can reach the rarefied spherical micelle
phase. In the caseh ∈ [− 1

2(2K1 − K0), −K1/2] (here we choose, for example,K1/K0 = 2
and h/K0 = −1.25) the phase diagram presents the phases corresponding toG1, G2 and
G4, the critical end-point BA2 and the tricritical points C1 and C2 (figure 10). In this phase
diagram we note that there exists a first-order transition between the phases corresponding
to the rodlike micelles and the spherical micelles.
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Figure 12. The phase diagram of the model forh = 0 (for example,K1/K0 = 2 andh/K0 = 0)
on theT –J plane.G2 andG5 are the pure phases. The solid lines are first-order transitions and
the dashed lines are second-order transitions. The tricritical point C and the multicritical point
B3 occurs.

In the caseh ∈ [−K1/2, 0] (here we choose, for example,K1/K0 = 2 andh/K0 =
−0.5) the phase diagram presents the phases corresponding toG1, G2, G3, G4 andG5, the
critical end-points (BA2)1, (BA2)2 and B2A and the multicritical point B3 (figure 11). At
low temperatures we find that there exists a first-order transition between the rodlike micelle
phase and the spherical micelle phase as we vary the attraction intermicellar parameterJ ,
but for high temperatures we can observe a second-order transition between the rarefied
spherical micelle phase and the reversed micelle phase and another between the latter and
the spherical micelle phase.

In the caseh = 0 (here we choose, for example,K1/K0 = 2 andh/K0 = 0) the phase
diagram presents the phases corresponding toG1, G2 and G5, the tricritical point C, and
the multicritical point B3 (figure 12). We point out that although there is a coexistence of
two ground states(G4, G5), at zero temperature for 0< J < K1 − K0, only one phase
appears at non-zero temperatures.

In the caseh ∈ [0, K1] (here we choose, for example,K1/K0 = 2 andh/K0 = 1) the
phase diagram shows the existence of the phasesG2, G5 andG6 and the critical end-point
BA2 (figure 13).

In the caseh > K1 (here we choose, for example,K1/K0 = 2 andh/K0 = 3) the phase
diagram shows the existence of the phasesG2, G5, andG6, and the critical end-point BA2

(figure 14).
On the phase diagrams in figures 13 and 14 we note only the existence of the first-order

transition between the phases with residual entropy corresponding to reversed micelles and
spherical micelles as we vary the attraction intermicellar parameterJ .
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Figure 13. The phase diagram of the model forh ∈ [0, K1] (for example,K1/K0 = 2 and
h/K0 = 1) on theT –J plane.G2, G5 andG6 are the pure phases. The solid lines are first-order
transitions and the dashed lines are second-order transitions. The critical end-point BA2 occurs.

Figure 14. The phase diagram of the model forh > K1 (for example,K1/K0 = 2 and
h/K0 = 3) on theT –J plane.G2, G5, andG6 are the pure phases. The critical end-point BA2

occurs.

6. Conclusions

We have presented, in this paper, some new theoretical and numerical results concerning the
phase diagrams of the micellar binary solutions. This allows us to check that the conjecture
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proposed by Shnidman and Zia about the behaviour of the phase diagrams is correct, so
we point out that this work has completed the earlier study of [16] by giving the complete
description of the phase diagrams and the nature of their transition lines. Therefore, the
study by means of a direct numerical analysis of the mean-field equations allows us to
establish the G3 phase (the rarefied spherical micelles) at high temperatures; these disappear
at low temperatures (see figures 3, 9 and 11).
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